8.3. Phương trình Bernoulli

1) Thiết lập phương trình

Xét một khối chất lưu bất kì ABCD chứa trong một đoạn ống dòng giới hạn bởi các tiết diện S1 và S2. Gọi v1 và v2 là vận tốc chảy của chất lưu tại các tiết diện đó. Sau thời gian dt, khối chất lưu này chuyển tới vị trí mới A’B’C’D’. Ta có:

Độ biến thiên động năng của khối chất lưu sau thời gian dt là:

\(\Delta {{W}_{\text{}}}={{{W}’}_{\text{}}}-{{W}_{\text{}}}=\left( {{{{W}’}}_{\text{(2)}}}+{{{{W}’}}_{\text{(3)}}} \right)-\left( {{W}_{\text{(1)}}}+{{W}_{\text{(2)}}} \right)={{{W}’}_{\text{(3)}}}+{{W}_{\text{(1)}}}\)

Nghĩa là độ biến thiên động năng của toàn khối bằng hiệu động năng của hai khối nhỏ (1) và (3). Mà từ phương trình liên tục (6.5) ta suy ra: khối lượng m và thể tích V của hai khối (1) và (3) là bằng nhau và bằng  \( m=\rho V  \)

Suy ra:  \( \Delta {{W}_{\text{}}}=\frac{1}{2}mv_{2}^{2}-\frac{1}{2}mv_{1}^{2}=V\left( \frac{\rho v_{2}^{2}}{2}-\frac{\rho v_{1}^{2}}{2} \right) \)         (6.6)

Mặt khác, ngoại lực tác dụng lên khối chất lưu đó gồm có: trọng lực, áp lực tại hai tiết diện S1, S2 và áp lực của các ống dòng xung quanh. Công của các ngoại lực này sinh ra trong thời gian dt được tính như sau:

+ Công của trọng lực: ta thấy toàn bộ khối chất lưu đang xét gồm có 2 phần, trong đó phần (2) không thay đổi về độ cao, vậy công của trọng lực chính là công làm di chuyển phần (1) xuống vị trí của khối (3):  \( {{A}_{1}}=mg\left( {{h}_{1}}-{{h}_{2}} \right)=\rho Vg\left( {{h}_{1}}-{{h}_{2}} \right) \)

+ Áp lực tại tiết diện S1 sinh công dương đẩy khối chất lưu chuyển động; còn áp lực ở tiết diện S2 sinh công cản. Do đó, công của áp lực tại hai tiết diện này là:

 \( {{A}_{2}}={{F}_{1}}{{s}_{1}}-{{F}_{2}}{{s}_{2}}={{p}_{1}}{{S}_{1}}{{v}_{1}}dt-{{p}_{2}}{{S}_{2}}{{v}_{2}}dt={{p}_{1}}V-{{p}_{2}}V=\left( {{p}_{1}}-{{p}_{2}} \right)V  \)

+ Áp lực của các ống dòng xung quanh luôn vuông góc với mặt bên của ống dòng đang xét nên không sinh công.

Do đó, tổng công của các ngoại lực tác dụng lên khối chất lưu đang xét là:

\(A={{A}_{1}}+{{A}_{2}}=\rho gV\left( {{h}_{1}}-{{h}_{2}} \right)+\left( {{p}_{1}}-{{p}_{2}} \right)V\)          (6.7)

Theo định lí động năng, ta có:  \( \Delta {{W}_{\text{}}}=A  \). Kết hợp (6.6) và (6.7), suy ra:

 \( V\left( \frac{\rho v_{2}^{2}}{2}-\frac{\rho v_{1}^{2}}{2} \right)=\rho gV\left( {{h}_{1}}-{{h}_{2}} \right)+\left( {{p}_{1}}-{{p}_{2}} \right)V  \)

Suy ra:  \( {{p}_{1}}+\rho g{{h}_{1}}+\frac{\rho v_{1}^{2}}{2}={{p}_{2}}+\rho g{{h}_{2}}+\frac{\rho v_{2}^{2}}{2} \)       (6.8)

Hay  \( p+\rho gh+\frac{\rho {{v}^{2}}}{2}=const  \)       (6.9)

Phương trình (6.9) được gọi là phương trình Bernoulli. Trong đó cả ba số hạng ở vế trái đều có cùng thứ nguyên của áp suất. Số hạng p được gọi là áp suất tĩnh; số hạng  \( \rho gh  \) được gọi là áp suất trắc địa, vì nó liên quan đến độ cao so với mặt đất hoặc mặt biển, hoặc một mặt phẳng nằm ngang nào đó làm mốc; số hạng  \( \frac{\rho {{v}^{2}}}{2} \) gọi là áp suất động vì nó liên quan đến vận tốc của chất lưu.

Vậy, tổng áp suất tĩnh, áp suất trắc địa và áp suất động không thay đổi tại mọi điểm trong chất lưu.

Nhận Dạy Kèm Vật Lý Đại Cương Online qua ứng dụng Zoom, Google Meet,...

2) Hệ quả 

a) Nếu xét những điểm trong chất lưu cùng nằm trên một mặt phẳng ngang (h = const) thì áp suất trắc địa không thay đổi. Từ (6.9) suy ra:

 \( p+\frac{\rho {{v}^{2}}}{2}=const  \)       (6.10)

Tổng áp suất tĩnh và áp suất động không thay đổi tại mọi điểm thuộc cùng một mặt phẳng ngang trong chất lưu. Do đó, nơi nào có dòng chạy mạnh thì nơi đó áp suất tĩnh giảm và ngược lại.

b) Nếu trong chất lưu không có dòng chạy (v = 0) thì từ (6.9) ta có:

 \( p+\rho gh=const  \)       (6.11)

(6.11) là phương trình cơ bản của tĩnh học chất lưu. Ta sẽ bàn luận (6.11) sâu hơn ở bài Tĩnh học chất lưu.

3) Vài ứng dụng của phương trình Bernoulli

a) Tính vận tốc chảy ở vòi – công thức Toricelli

Xét một bình chứa chất lỏng có một vòi ở thành bình. Miệng vòi cách mặt thoáng của chất lỏng trong bình một đoạn h. Gọi S1 là diện tích mặt thoáng của chất lỏng trong bình và S2 là tiết diện ngang ở miệng vòi. Áp dụng phương trình Bernoulli, ta có:

 \( {{p}_{1}}+\rho g{{h}_{1}}+\frac{\rho v_{1}^{2}}{2}={{p}_{2}}+\rho g{{h}_{2}}+\frac{\rho v_{2}^{2}}{2} \)

Vì p1 = p2 = p0 = áp suất khí quyển; h1 – h2 = h, nên  \( \frac{\rho }{2}\left( v_{2}^{2}-v_{1}^{2} \right)=\rho gh  \).

Mà: S1v1 = S2v2; S1 >> S2 nên v1 << v2

Vậy:  \( {{v}_{2}}=v\sqrt{2gh} \)        (6.12)

Công thức (6.12) được gọi là công thức Toricelli. Từ đó ta thấy vận tốc chảy của chất lỏng (lí tưởng) tại miệng vòi chỉ phụ thuộc vào độ cao của cột chất lỏng so với miệng vòi, miệng vòi càng thấp thì vận tốc phun ra càng mạnh.

b) Bơm tia

Xét một ống dẫn nhỏ nằm ngang. Khi đó độ cao h coi như không đổi tại mọi điểm trong chất lưu. Ta có (6.10):  \( p+\frac{1}{2}\rho {{v}^{2}}=const  \). Từ (6.10) suy ra: nơi nào có vận tốc chảy lớn thì ở đó áp suất tĩnh p nhỏ. Nói cách khác, chỗ có tiết diện ống càng nhỏ thì tại đó, áp suất tĩnh p càng nhỏ. Dựa vào nguyên tắc này, người ta chế tạo ra thiệt bị gọi là “bơm tia” – dùng trong việc sơn các dụng cụ, thiết bị khác – và bộ chế hòa khí (carburateur) của động cơ đốt trong.

Cấu tạo: gồm một ống dẫn khí nén, có cổ thắt ở gần lối ra. Tại nơi cổ thắt có đường thông với bình đựng sơn (hay nhiên liệu – nếu là bộ chế hòa khí). Bình đựng sơn có một lỗ thống hơi, để áp suất trên mặt thoáng của sơn (nhiên liệu) luôn bằng áp suất khí quyển.

Hoạt động: Khi ta cho luồng khí nên đi qua ống, tại cổ thắt, vận tốc khí rất lớn nên áp suất tĩnh ở đó nhỏ hớn áp suất khí quyển, do đó sơn (nhiên liệu) từ bình chứa dâng lên hòa vào luồn khí phun ra ngoài thành tia.

Ngoài các ứng dụng kể trên, phương trình Bernoulli còn là cơ sở để tạo ra các thiệt bị đo áp suất (áp kế), thiết bị đo vận tốc của dòng chảy (lưu lượng kế), hay nghiên cứu về lực nâng máy bay, giải thích các hiện tượng: cửa sổ tự mở, tốc mái nhà khi có gió lớn, …


error: Content is protected !!
MENU
Trang Chủ